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In vector spaces of dimension n = p+ ¢ a multivector (Clifford) algebra 4(p, q)
can be constructed. In this paper a multivector €(p, g) representation, not
restricted to the bivector subalgebra €*(p, q), is developed for some of the Lie
groups more frequently used in physics. This representation should be especially
useful in the special cases of (grand) unified gauge field theories, where the
groups used do not always have a simple tensor representation.

1. INTRODUCTION

Although W. K. Clifford published his first paper (Clifford, 1878)
defining the “geometric algebras™ in 1878, it is only recently (Chisholm and
Common, 1986) that the Clifford algebras have become more than an
interesting mathematical possibility and that they are being used to solve
some technical problems in mathematics and in physics, inasmuch as they
provide a unified universal algebra and mathematical language. This paper
shows in particular how representations of Lie groups can be written in
that unified structure, avoiding a series of technical difficulties. Furthermore,
this construction can become a basic tool for a logical structural model in
field theories ranging from grand unified theories to string field models
(including supersymmetry) (Ross, 1985). Clifford algebras or multivector
algebras can themselves be represented by matrix algebras; then in a sense
it is not surprising that multivectors can be used to represent Lie groups
which are so often represented by matrices. Here we give a direct method
to find the multivector representations.

2. CLIFFORD ALGEBRAS

We define a Clifford algebra as follows (see, for example, Hestenes,
1966; Hestenes and Sobczyk, 1984; Lounesto, 1980).
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Definition 2.1. A clifford algebra €(p, g) is an associative ring over the real
(or complex) field F and simultaneously is a vector space over the same
field, such that for all A, B (called multivector) e 6(p, q) (signature of
generators p, g as defined below) and o, B F

A=(A)+{Ah+{(A)h+ - -=)(A),; r=0,1,...,p+tq (2.1)
where (A), is called the r-vector part of A. If A=(A), for some positive

integer r, then A is said to be homogeneous of grade r and will be called
an r-vector. The elements of (A), have the following properties:

(A+ B), =(A),+(B), (2.2a)
(AA), = A{A), =(A),A if A=(A) (2.2b)

Formally,
€(p,q)=%6"(p, P+ € (pg)+ - +€""(p,q) (2.3)

in an obvious decomposition in r-vector parts.
The relation between r-vectors in €(p, q) is given by their structure
and their product in the algebra (<) thus:

if A=(A), then AcA=A’=(A%,+(A%, (2.4a)

Furthermore, a member of a linearly independent set of elements of
A is called a basis vector ¢; of a given representation if in that representation
e?=(A%,. For €(p, q) there are p normalized basis vectors with e =+1
and g normalized basis vectors with e? = —1 (Dauns, 1988):

(ei ° ej)symmetrized= gl} = diag(19 e 19 —-15 e -_1)
with p+ g = n elements (2.4b)

We assume that all multivectors can be developed as an r-blade sum
(Hestenes and Sobczyk, 1984); an A, multivector is an r-blade (or a simple

r-vector) if and only if it can be factored into a product of r mutually
anticommuting vectors a,, a,, ..., 4,, that is,

A =aa,...a, (2.5)
where
a,a; = ~ ayl (2.6)
forj, k=1,2,...,rand j# k. Also, r<p+qg=n.
A multivector is called even if A=(A)y+Y, (A), n=1,2,....
Finally, for every nonzero r-blade A,, there exists a nonzero vector a

in #(p, q) = €'(p, q) (basis vector) such that A,a is an (+1)-blade. There
are 2" —1 possible r-blades for a set a;.
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Our definition is only one of a series of possible definitions for Clifford
algebras (and perhaps it is not the best one for some particular purposes),
but it is clear and practical for our presentation and can be used properly
to deduce all geometrical operations which are important in a physical
model (inner product, outer product, Lie bracket, etc.).

On the other hand, for our definitions we can easily get matrix rep-
resentations for the multivector algebra using square matrices m X m [square
matrices are required to define the algebra and geometrical products given
by (2.1), (2.2), and (2.4)] with a minimum of 2" degrees of freedom over
the real field or 2"*' degrees of freedom over the complex field.

3. MULTIVECTORIAL REPRESENTATION FOR LIE GROUPS

Group theory provides a natural mathematical language for describing
symmetries of the physical world; in particular, we have witnessed the
increasing application of group theory to physics and to many other scientific
areas. In quantum mechanics and quantum field theory in particular it is
needed as a powerful tool in exploring both the traditional discrete and
continuous space-time symmetries and in elucidating the origin of internal
symmetries of nature (gauge invariance) and permutation symmetry (Wu
Ki Tung, 1985).

The basic definition of the Clifford aigebra presents {€(p, g), +} as an
Abelian group (+ being the algebra’s sum) and we will construct a multi-
vector representation for Lie groups assigning to every Lie generator a
multivector M such that the set {M} reproduces the Lie algebra of the
group generators.

In short, we will exhibit the isomorphism from an abstract group G to
a group of multivector operators U(G) on €(p, q) (if the representation
is faithful, the homomorphism is also an isomorphism, a degenerate rep-
resentation being one which is not faithful); let us be more specific: we will
construct the faithful mapping

geG=>U(g) (3.1)
where U(g) is a multivector operator on 6(p, ¢), such that (Artin, 1957)

U(g)U(g,)=U(g:g) (3.1a)

i.e., the multivector operators satisfy the same rules of multiplication as the
original group elements.

Following Hestenes and Sobczyk (1984), we start our construction by
defining an orthogonal transformation of the set of 1-vectors, remembering
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that {{/(p, 9)):} = €'(p, q):
(h(A) ° h(B))symmetrized = h(A ° B)symmelrized (32)

for each A, B in «(p, q) (these are the isometries of the inner product).
The group of all orthogonal transformations of «(p,q) is called the
orthogonal group of &, , and denoted by O(p, g). A basis vector or a versor
v in €(p, q) is then defined as a multivector that can be factored into a
product of k-vectors. A unit versor obeys (¥ ° U)symmetrizea = £1.

The multiplicative group of all invertible versors in €(p, g) is the
Clifford group %(p, ) and the multiplicative group of unit versors in €(p, q)
is the versor group V(p, q), which is 2: 1 homomorphic (Wu Ki Tung, 1985)
to O(p, q); thus, the structure of O(p, g) and its subgroups [think, for
example, in SO(p, g)] can be described using an algebraic analysis. The
multiplicative group of all even unit versors in €(p, q) is called the spin
group of &/, , [Spin(p, q)] and the rotor group of <, ,, Spin‘(p, q), is the
group of all the special versors in 4(p, q) such that S'S=1 (where S'=
a,-+-a, if S=a,a, - a, because a, =a;), called rotors; obviously the
rotor group is a subgroup of the spin group.

For the applications to physics we regard, as usual, the spacetime as
a pseudo-Euclidean vector space (1, 3), the orthogonal group O(1, 3) is
the Lorentz group (its elements are called Lorentz transformations), and
S0'(1,3) is the proper Lorentz group. Spin'(1, 3) is called the spin-1/2
representation of the proper Lorentz group (Bugajska, 1986a-c).

In this paper, we assume the fundamental theorem of Lie group theory
(the generators of a Lie group form a Lie algebra) as true; thus, a
classification of Lie groups will be carried out by classifying Lie algebras.
In a first type of representation we construct an associative algebra isomor-
phic to a Lie algebra where the Lie bracket is written as

[A, B]=4AB - BA) (3.3)

with A and B e C*(p, q) [bivector algebra of C(p, q)]. All subalgebras of
C(p, q) closed under (3.3) are Lie algebras.

We are this far following in fact the Hestenes and Sobczyk presentation
of this problem, where these authors use the “MIC” hypothesis that every
Lie algebra is isomorphic to a bivector algebra, useful to represent the most
interesting Lie groups, but in our paper we will show alternative ways to
get a multivector representation for some Lie groups and their connection
with an associated spinor-multivector system where the MIC idea is not
used. :

According to the MIC hypothesis, it is possible to construct the Lie
algebra of the special unitary group SU(n) and its generalization SU(p, q)
as a subalgebra of B(2p,2q) associated with of,, as follows; we select a
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basis in &f;,,, of vectors e,,...,e, and fi=e,.,...,f,=e,, with the
properties

e =ffi=g
ei'f]t=O

withi,j=1,..., n, and the ““dot” product a- b=3[a o b+ b o a]. From these
vectors we get n°— 1 linearly independent bivectors [a basis for B(2p, 2¢)]
using the “wedge” product anb=3[acb—beal:

(3.4)

E;=ene+finf;
H = e A fi— a1 A S

where i, j=1,...,nand k=1,...,n—1 with i #}.

We can now present a multivectorial analysis for typical Lie groups
used in modern field theory applying the MIC hypothesis and comparing
the result with multivectorial representations using nonbivector subalgebra
in an associated spinor-multivector system.

3.1. SUQ,5)

This group on a Euclidean vector space s/(0,5) was one of the first
used in grand unified theories to model elementary particle interactions; it
appears to be a useful step toward the final answer in this kind of theory.

To get a multivectorial representation for SU(0, 5) (according to the
MIC hypothesis), we construct the Euclidean vector space &, ,, with the
basis e,, e,, e;, €4, s, f1, 2, 5, f4, s and the metric tensor

e e=f-f=g;=dag(-1,-1,-1,-1,-1) (3.6)

As the basis bivectors for (0, 10), we can use the following nonsimple
bivectors:

Ep=ene;+finf Fo=enf—fine
Es=e nestfinf; Fa=enfi—fine
Eu=enes+finfs Fu=enfy—fine,
Es=enest+finfs Fis=enfs—fines

Erps=e;nes+onf; Fya=enfs—fines
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E=ene,tinfy
Eyxs=e;nes+fonfs
Eyu=esne,+finf,
Ess=esnes+finfs
Ei=esnestfunfs
Hi=enfi—eanfs
H,=e;nfr—esnfs

Keller and Rodriguez-Romo

Fyu=enfi—frne,
Fys=e;nfs—fines
Fyu=esnfa—fine,
Fys=esnfs—fines
Fis=esnfs—fones
Hy=esnfi—esnfs
Hy=e,nfa—esnfs

(3.7)

such that they satisfy the Lie algebra for the 24 generators of the SU(5)
group (it is a faithful representation). For example,

LEy, Eu]=0 [Hi,Hj]=[Hi, H]=0

" (3.8)
[E‘j’ ka] = 2Ejk [Hh Ey] = _2Fij

[F}j, Fk1]=0 [H,', Ejk]=2Flk With]=l+1

These relations are in €(0, 10), which then contains the SU(0, 5) group
and the €(0, 5) group. When the vectors used in €(0, 5) and %(0, 10) are
normalized, the versors of these groups are isomorphic to the V(0, 5) and
V(0, 10) groups (we should remind the reader that the versor groups are
2:1 homomorphic to the orthogonal group).

We have presented the multivector representation of SU(0, 5) in this
form for physical reasons; first, because in this method the necessity to
enlarge the basis space o5 to &, appears in a natural way and second
because the construction of 4(0, 10) leads to the O(0, 10) group and to the
S0O(0, 10) group directly. The SO(0, 10) group is very important in the
vertical grand unified theories [these theories improve some SU (0, 5) predic-
tions and avoid some problems]; moreover, this construction allows a logical
coordination with the exceptional groups [predicting horizontal funda-
mental interactions between families (Ross, 1985)]. Then, if we use one
single mathematical language to both construct Lie groups useful in grand
unified theories and to include the spontaneous symmetry breaking (SSB),
within the Clifford language, we can get naturalness in the model besides
avoiding some representation problems.

Using the spin group definition, the spin(0, 10) group contains the
multivectors in 6(0, 10) such that they are invariant if ¢;~> —e; and f; > —f;
[the SU(O0, 5) group is a subgroup of the spin(0, 10) group]; on the other
hand, the elements of the spin(0, 5) group are invariants for the e; > —¢;
involutions in €(0, 10) and they form another SU(0, 10) subgroup. It is
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also possible to show the isomorphism between the spin(0, 5) group and
%(0, 4) group. This is a feature of the representations by multivectors which
appears in many cases for different (p, g) to a group with n'=n—1=

ptg-—1.

In the SU(0,5) grand unified theory the symmetry is broken to the
SU(3),xSU(2)x U(1), model when the scale energy reaches the value
predicted from the renormalization group equations; therefore it is useful
to show a maximal subgroup SU(3).x SU(2) x U(1), which is contained
in SU(0, 5) under the following relations:

E,(SU(0,5))< E,»(SU(0, 3))
E3(SU(0,5)) <> E3(SU(0, 3))
E»(SU(0, 5)) < E,»(SU(0, 3))
F,(SU(0, 5)) < F,(SU(0, 3)) -
F3(SU(0, 5)) < Fy3(SU(0, 3))
F,3(SU(0, 5)) «» F53(SU(0, 3))
H,(SU(0,5))«< H,(SU(0, 3))
H,(SU(0, 5))< H,{(SU(0, 3))
E(SU(0,5)) < E;»(SU(0, 2))
Fi5(SU(0,5)) < Fi,(SU(0, 2))
H,(SU(0, 5))« H,(SU(0, 2))
H,(SU(0,5))< E,(SU(0,1))

(3.9)

which are eight SU(0, 3). generators, three SU(0, 2) generators, and one
for U(0, 1). Thus, the SU(0, 5) > SU(0,3), @ SU(0,2® U(1), chain is well
defined in this multivectorial representation [the other SU(0, 5) generators
transform under the two non-Abelian groups simultaneously and physically
they allow quark-lepton interaction besides the electroweak and strong
interactions].

As in this representation we include only Euclidean spaces, the rotor
groups [Spin'(0, 10), Spin’(0, 5), and Spin‘(0, 3)] are isomorphic to the
corresponding spin groups [Spin(0, 10), Spin(0, 5), Spin(0, 3)].

3.2. SU(1, 3)

This is an interesting example because we can use the multivector
algebra of the Minkowski space as the algebra for the generator space, and
because there are models with grand unified groups larger than SU(0, 5)
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which include it in the intermediate step for the spontaneous symmetry
breaking (SSB). In this case we use s, ¢ with the basis (e, e, e, €33 fo,
fi» 2, f3) (according to the MIC hypothesis), such that

e ¢=f fi=g;=diag(l,-1,~1,-1) for 4j=0,1,2,3 (3.10)

From the basis bivectors for %*(2,6) we can construct the following
nonsimple bivectors:

Eoy=egne +forky Fo=enfi-fore
Ep=eynes+fornfs Fpo=esnfr—for e
Eps=egnestfonfs Fu=enfs—fones
Eh=enestfinfs Fi=enfo—fine,
Es=e nestfinfs Fi=einfs—fines
Ex=esnes+foinfs Fyu=e;nfi—fones
Hoy=eonfo—e A fy Hy=e;nfh—esnfs
Hi=enfi—exnf

which satisfy the Lie algebra for the SU(1, 3) group.

It is obvious from the definition of Clifford algebras that the €(2, 6)
group contains the €(1, 3) group and both are isomorphic to the correspond-
ing versor groups (2:1 homomorphic to their orthogonal groups), and that
the Spin(1, 3) group is isomorphic to the €(0, 3) group, while the Spin'(1, 3)
group (the Lorentz proper group for the spin-1/2 multivector representation)
is isomorphic to %(0, 2). This chain makes €(2, 6) especially important.

(3.11)

3.3. SU(0,3)

In physics it is of particular interest to analyze the SU(0, 3) group
because it is the gauge group used in the quantum chromodynamics theory
(QCD); this Yang-Mills field theory is a dynamic principle which explains
and predicts some experimental facts of the strong interactions. As a matter
of fact, one of the first applications of SU(0, 3) was in the classification of
the energy spectrum for hadrons; afterward it was recognized as being even
more important in the theory of “color” (Aitchison, 1984).

In the discussion of the SU(0, 5) group above, the SU(0, 3) group was
already constructed as a subgroup of SU(0, 5). Here we get a multivector
representation for this group enlarging the basis space &,, to 5,5, @
construction which would force the introduction of isotopic spaces and the
use of bivector algebras. This would be particularly important in the cases
where it is physically necessary to use &, ; and its Clifford group €(1, 3).
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For the SU(0, 3) group it will be shown that it is enough to use a
multivector representation of 6(1, 3). This Clifford algebra has an irreduc-
ible matrix representation over the complex field, 4 x4 matrices with 16
linearly independent elements; we can choose these 16 matrices as the four
Dirac vy, matrices and their products [for groups larger than SU(0, 3) it
will be necessary to use another matrix set with more degrees of freedom
than the Dirac set]. All multivectors M in %(1, 3) can be represented as a
linear combination of the Dirac gamma matrices v,, in the standard rep-
resentation, for example. For this reason it is not only possible but also
straightforward to find a faithful multivectorial representation for the
SU(0, 3) group in €(1, 3) and its subgroups. In several cases when the Lie
group has 16 generators or less it can have a multivectorial representation
in %(1, 3).

In our present case, due to the fact that the SU(0, 3) group has only
eight generators, it is possible to find several multivectorial representations
in €(1,3) for it. As a first example consider (here y;..= vy, - *)

1 ) 1.
/\1=5(‘)’01+1'}’23) )\525(1’)’3‘7’123)
1 . i
A== (Yoz— iv13) Ae=7(Yoo3 1 72)
2 2
1 . i
)\325(')’03"'")’12) /\725(}’1"‘?’013) (3.12)

1 .
Ay= 5( Yo+ i¥o12)

i 1 I
A==yt = Y ——=
8 (\/g’)/s 2\/5703 2\/§'}’12>
where the A;, i=1,..., 8, satisfy the Lie algebra for SU(3) and

{Yi> Yiuws Mups Yiwpo = ¥s+ € €(1,3)

The A,, A, A; (and Ag) generators constitute a subalgebra included in
%°(1,3) forming a €(1, 3) multivectorial representation for the SU(2, 0)®
U(1,0) maximal subgroup [A,, A5, and A, are generators for the SU(2, 0)
group and Ay is the generator for the U(1, 0) group]. The other SU(0, 3)
generators do not constitute a subalgebra [they are odd versors in C(1, 3)]
and transform under SU(2,0) and U(0, 1) simultaneously.

The v; (i=1,2,3) generators are invariant under a product with the
iys, while A; (j=4,5) are invariant under a product with iy,,; also the A,
(k=6,7) are invariant under a product with yo; = —(iys)(iy,.); these factors
are U(1) generator elements. This observation coincides with concepts
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presented by Keller (1982, 1984, 1985, 1986, 1991; see also Rodriguez,
1986), who discusses the idempotents which define the projectors needed
to classify minimum ideals in €(1, 3) (spinors) and the matrix representa-
tions associated with each case; it is convenient to write explicitly

A+ iy = A, i=1,2,3, \eSU(Q2)

%(1""")’12))‘1‘:)\1, j=45

%(1+703))\R=Ak’ k:6,7
for the (3.12) generators, where 5(1+ iys) is the chiral projector and 3(1+ iy,,)
is the spin projector and the last one is the z-momentum projector. Finally,
this multivector structure has a (nontrivial) matrix representation, where it
is convenient to use the chiral form for the representation of the Dirac
matrices and to choose the chiral and spin projectors to classify minimum
ideals in the %(1, 3) (spinors) and conversely this choice generates the chiral

representation for the Dirac matrices.
Another construction for SU(3) in €(1, 3) would be given by

i 1 .
A== (Y237 Yo3) )\’5=5(’)’3_1'}’123)

2
i N
Az=5(713+‘)’013) )\6=E(‘)’2+l’}’01)
. , 1 .
A3'—‘5(7’12"‘)’012) /\7='2“(71“l')’02)
, 1 . , 1 . .
/\4=5(75+1703) /\8=5\/—§'(270+1712—17012)

using the same notation used for the generators (3.12).

These are examples where a subalgebra of %(1,3) is not its bivector
subalgebra. This is needed because the multivector representation for SU(2)
has even and odd versors [the even part of €(1,3) is a subalgebra of it,
but the contrary is not necessarily true]; the SU(2) generators are A, A5,
and Aj, while the U(1) generator is Ag; it is constructed using a lineal
combination of multivectors which do not change the group generators [y,
for A1, A%, and A%; iy, for A and AS; and finally iy, = (yo)(iyi2) for Aj
and A%]. In this construction

31+ y)A; = A, i=1,2,3, A €eSU(2)
%(lii‘)’lZ)/\j:/\j, j=4,5
(1% iya12) Ak = Ag, k=6,7

where 3(1+v,) is a “‘mass” projector for the field. This structure has the
nontrivial matrix representation induced when we use the mass projector
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[5(1£7y,)] and spin [3(1xiy;;)] to classify minimum ideals of %(1,3)
(spinors). Here the convenient choice is the standard representation for the
Dirac matrices [and their products, see Rodriguez, 1986].

Consequently, we have a general method (deduced from the illustrated
with the two special cases presented here) to construct a multivectorial
representation for Lie groups. First, we proposed the SU(3) or SU(2)
generators using multivectors of interest, either from physical or from
mathematical reasons, useful to classify the %(1,3) minimum ideals
(spinors); then, a second set of projectors is chosen in (1, 3) to construct
explicitly the multivector set of a given symmetry (invariant under a set of
group generators) and at the end we define the U(1) generator, up to a
normalization, as a lineal combination of the three multivectors which leave
the group generators invariant (in our case each one of them is the product
of the other two). The remaining generators are found as the corresponding
product of other previously found generators. Finally, it is important to
keep in mind that there is a nontrivial matrix representation for the spinor-
multivector system.

34. SUQ)

Nowadays the most successful gauge model is the SU(2)x U(1)
electroweak interaction model. In it the SU(2) group is locally isomorphic
to SO(3) and its square is locally isomorphic to the proper Lorentz group.
When we studied the SU(5) group above we got a multivectorial representa-
tion to the SU(3) group according to the MIC hypothesis; subsequently,
we obtained two multivectorial representations [within 4(1, 3)] using non-
simple multivectors which were not necessarily homogeneous. Due to the
fact that SU(2) has only three generators, it has several multivector rep-
resentations. in €(1, 3) [for example, {yq;} with i=1, 2, 3 or {iy,, iveYs,
vs}, which also satisfy the SU(2) Lie algebra].

We will illustrate elsewhere (Keller and Rodriguez-Romo, 1990) the
use of this multivector representation for common Lie groups in a spinor-
multivector map which will be used to make a multivector analysis of the
Dirac equation. Some applications are already included in our previous
papers.

In conclusion, it is possible and direct to find multivector representa-
tions of Lie groups which are relevant to direct use in the construction of
field theories.
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