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In vector spaces of dimension n =p + q a multivector (Clifford) algebra ~(p, q) 
can be constructed. In this paper a multivector C~(p, q) representation, not 
restricted to the bivector subalgebra ~2(p, q), is developed for some of the Lie 
groups more frequently used in physics. This representation should be especially 
useful in the special cases of (grand) unified gauge field theories, where the 
groups used do not always have a simple tensor representation. 

1. I N T R O D U C T I O N  

A l t h o u g h  W. K. Cl i f ford  pub l i shed  his first p a p e r  (Clifford,  1878) 
def ining the "geome t r i c  a lgeb ra s "  in 1878, it is on ly  recent ly  (Ch i sho lm and  
C o m m o n ,  1986) tha t  the  Cl i f ford a lgebras  have become  more  than  an 
in teres t ing  ma thema t i ca l  poss ib i l i ty  and  tha t  they  are  be ing  used  to solve 
some techn ica l  p r o b l e m s  in ma themat i c s  and  in physics ,  i nasmuch  as they  
p rov ide  a unif ied universa l  a lgebra  and  m a t h e m a t i c a l  language.  This p a p e r  
shows in pa r t i cu l a r  how represen ta t ions  o f  Lie groups  can be wri t ten  in 
tha t  unif ied s tructure,  avo id ing  a series o f  t echn ica l  difficulties. Fu r the rmore ,  
this cons t ruc t ion  can b e c o m e  a bas ic  tool  for  a logical  s t ruc tura l  m o d e l  in 
field theor ies  ranging  f rom grand  unif ied theor ies  to string field mode l s  
( inc lud ing  supe r symmet ry )  (Ross ,  1985). Cl i f ford a lgebras  or  mul t ivec to r  
a lgebras  can themselves  be r ep resen ted  by  mat r ix  a lgebras ;  then  in a sense 
it is not  surpr i s ing  tha t  mul t ivec tors  can be used  to represen t  Lie groups  
which  are so of ten r ep re sen ted  by  matr ices .  Here  we give a d i rec t  m e t h o d  
to find the  mul t ivec to r  represen ta t ions .  

2. C L I F F O R D  A L G E B R A S  

We define a Clifford a lgebra  as fo l lows (see, for  example ,  Hestenes ,  
1966; Hes tenes  and  Sobczyk,  1984; Lounes to ,  1980). 
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Definition 2.1. A clifford algebra CO(p, q) is an associative ring over the real 
(or complex) field F and simultaneously is a vector space over the same 
field, such that for all A, B (called mult ivector)c ~(p ,  q) (signature of  
generators p, q as defined below) and a, 13 ~ F 

A=(a)o+(Ah+(a):+ . . . .  Z ( a ) r ;  r = 0 ,  1 , . . .  , p + q  (2.1) 
r 

where (A)r is called the r-vector part of  A. I f  A = (A)~ for some positive 
integer r, then A is said to be homogeneous of  grade r and will be called 
an r-vector. The elements of  (A)r have the following properties: 

CA + B)r = (A)r + (B)~ (2.2a) 

(ha), = A(A)~ = (a)~h if h = (h)o (2.2b) 

Formally, 

C~(p,q)=C~O(p,q)+C~l(p,q)+...+c~p+q(p,q) (2.3) 

in an obvious decomposit ion in r-vector parts. 
The relation between r-vectors in Cg(p, q) is given by their structure 

and their product  in the algebra (o) thus: 

if A = ( A ) I ,  then AoA=AZ=(AZ)o+(A2)2 (2.4a) 

Furthermore, a member  of  a linearly independent set of  elements of  
A is called a basis vector ei of  a given representation if in that representation 
e2=(A2)o. For Cg(p, q) there are p normalized basis vectors with e~= +1 
and q normalized basis vectors with e 2 = - 1  (Dauns, 1988): 

(ei o ej)~ymmetrized = go = diag(1 . . . .  1, - 1 , . . .  - 1 )  
with p + q = n elements (2.4b) 

We assume that all multivectors can be developed as an r-blade sum 
(Hestenes and Sobczyk, 1984); an Ar multivector is an r-blade (or a simple 
r-vector) if  and only if it can be factored into a product  of  r mutually 
anticommuting vectors al, a2 , . . . ,  ar, that is, 

Ar = a l a 2 . . ,  ar  (2.5) 

where 

ajak = - aka~ (2.6) 

for j ,  k = l ,  2 , . . . , r a n d j # k .  Also, r < p + q = n .  
A multivector is called even if A = (A)o + ~n (A)2,, n = 1, 2 , . . . .  
Finally, for every nonzero r-blade At, there exists a nonzero vector a 

in ~/(p, q) = ~ l (p ,  q) (basis vector) such that Ara is an ( r +  1)-blade. There 
are 2 n -  1 possible r-blades for a set a~. 
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Our definition is only one of a series of possible definitions for Clifford 
algebras (and perhaps it is not the best one for some particular purposes), 
but it is clear and practical for our presentation and can be used properly 
to deduce all geometrical operations which are important in a physical 
model (inner product, outer product, Lie bracket, etc.). 

On the other hand, for our definitions we can easily get matrix rep- 
resentations for the multivector algebra using square matrices rn • m [square 
matrices are required to define the algebra and geometrical products given 
by (2.1), (2.2), and (2.4)] with a minimum of  2 n degrees of freedom over 
the real field or 2 "+1 degrees of freedom over the complex field. 

3. MULTIVECTORIAL REPRESENTATION FOR LIE GROUPS 

Group theory provides a natural mathematical language for describing 
symmetries of the physical world; in particular, we have witnessed the 
increasing application of  group theory to physics and to many other scientific 
areas. In quantum mechanics and quantum field theory in particular it is 
needed as a powerful tool in exploring both the traditional discrete and 
continuous space-time symmetries and in elucidating the origin of  internal 
symmetries of  nature (gauge invariance) and permutation symmetry (Wu 
Ki Tung, 1985). 

The basic definition of  the Clifford algebra presents { ~(p,  q), +} as an 
Abelian group (+ being the algebra's sum) and we will construct a multi- 
vector representation for Lie groups assigning to every Lie generator a 
multivector M such that the set {M} reproduces the Lie algebra of the 
group generators. 

In short, we will exhibit the isomorphism from an abstract group G to 
a group of multivector operators U(G) on ~(p,  q) (if the representation 
is faithful, the homomorphism is also an isomorphism, a degenerate rep- 
resentation being one which is not faithful); let us be more specific: we will 
construct the faithful mapping 

g ~ G ~ U(g) (3.1) 

where U(g) is a multivector operator on ~(p,  q), such that (Artin, 1957) 

U(gl) U(g2) : -  U(glg2) (3.1a) 

i.e., the multivector operators satisfy the same rules of multiplication as the 
original group elements. 

Following Hestenes and Sobczyk (1984), we start our construction by 
defining an orthogonal transformation of the set of 1-vectors, remembering 
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that {(M(p, q))l} = ~l(p,  q): 

(h(A) o h(B) ) symmet r i ze  d = h(Ao B)symmetrize d (3.2) 

for each A, B in ~ ( p ,  q) (these are the isometries of  the inner product). 
The group of  all orthogonal transformations of ~ ( p , q )  is called the 
orthogonal group of,~p,q and denoted by O(p, q). A basis vector or a versor 
v in ~(p,  q) is then defined as a multivector that can be factored into a 
product of  k-vectors. A unit versor obeys (v o V ) s y m m e t r i z e  d = "4-1. 

The multiplicative group of all invertible versors in ~(p, q) is the 
Clifford group ~g(p, q) and the multiplicative group of unit versors in ~(p,  q) 
is the versor group V(p, q), which is 2:1 homomorphic (Wu Ki Tung, 1985) 
to O(p, q); thus, the structure of O(p, q) and its subgroups [think, for 
example, in SO(p, q)] can be described using an algebraic analysis. The 
multiplicative group of all even unit versors in <g(p, q) is called the spin 
group of ~p,q [Spin(p, q)] and the rotor group of ~p,q, Spint(p, q), is the 
group of all the special versors in CO(p, q) such that s t s  = 1 (where S t =  
ar.. .a~ if S = a l a 2 . . . a r  because a~=ai) ,  called rotors; obviously the 
rotor group is a subgroup of the spin group. 

For the applications to physics we regard, as usual, the spacetime as 
a pseudo-Euclidean vector space ~d(1, 3), the orthogonal group O(1, 3) is 
the Lorentz group (its elements are called Lorentz transformations), and 
s O t ( l ,  3) is the proper Lorentz group. Spint(1, 3) is called the spin- l /2  
representation of the proper Lorentz group (Bugajska, 1986a-c). 

In this paper, we assume the fundamental theorem of Lie group theory 
(the generators of a Lie group form a Lie algebra) as true; thus, a 
classification of  Lie groups will be carried out by classifying Lie algebras. 
In a first type of representation we construct an associative algebra isomor- 
phic to a Lie algebra where the Lie bracket is written as 

[A, B] = �89 - BA) (3.3) 

with A and B c ca(p, q) [bivector algebra of C(p, q)]. All subalgebras of 
C(p, q) closed under (3.3) are Lie algebras. 

We are this far following in fact the Hestenes and Sobczyk presentation 
of this problem, where these authors use the "M IC"  hypothesis that every 
Lie algebra is isomorphic to a bivector algebra, useful to represent the most 
interesting Lie groups, but in our paper we will show alternative ways to 
get a multivector representation for some Lie groups and their connection 
with an associated spinor-multivector system where the MIC idea is not 
used. 

According to the MIC hypothesis, it is possible to construct the Lie 
algebra of the special unitary group SU(n) and its generalization SU(p, q) 
as a subalgebra of B(2p, 2q) associated with egp, q as follows; we select a 
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basis in a12p.2q of  vectors e ~ , . . . ,  e, and fj  = e , + ~ , . . . , f , , = e 2 , ,  with the 
propert ies 

el .  ei = f i .  f j  = go 
(3.4) 

ei . f j  = 0 

with i , j  = 1 , . . . ,  n, and the " d o t "  p roduc t  a .  b =�89 o b +  b o a] .  From these 
vectors we get n 2 -  1 linearly independent  bivectors [a basis for B ( 2 p ,  2q)]  
using the "wedge"  p roduc t  a ^ b =�89 o b -  b o a ] :  

E 0 = el A ej+f~ ^fj  

Fij = e, Afj --f/ A ej (3.5) 

I l k  = ek Ark -- ek-~l ^fk+l 

where i, j =  1 , . . . ,  n and k = 1 . . . .  , n -  1 with i # j .  
We can now present a multivectorial analysis for typical Lie groups  

used in modern  field theory  applying the M I C  hypothesis  and compar ing  
the result with multivectorial  representat ions using nonbivector  subalgebra 
in an associated sp inor-mul t ivec tor  system. 

3.1. su(0,  5) 

This g roup  on a Eucl idean vector space at(0, 5) was one o f  the first 
used in grand unified theories to model  e lementary particle interactions; it 
appears  to be a useful step toward  the final answer in this kind of  theory. 

To get a multivectorial  representat ion for S U ( O ,  5) (according to the 
M I C  hypothesis) ,  we construct  the Eucl idean vector space ar with the 
basis el, e2, e3, e4, e5, f l ,  f=, f3, f4, f5 and the metric tensor 

e~. ei =f~ "fJ = g0 = d i a g ( - 1 ,  - 1 ,  - 1 ,  - 1 ,  - 1 )  (3.6) 

As the basis bivectors for cg2(0, 10), we can use the following nons imple  
bivectors: 

El2 = e, A e2-l-fl  A f2 

El3 = e, A e 3 + f l  A f3 

E14 = el A e4 + f t  A f4  

Et5 = e, A es + f l  A f5 

E23 -=-- e 2  A e 3 +f2 A f3 

F,~ = < A f 2 - - f ,  A e~ 

F,~ = e, ^ A - - f ,  A e4 

F,5 = e, Afs--f l  A e 5 

F23 = e2 A f3 --f2 a e 3 
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Ez4 = e2 ̂  e 4 + f 2  A f 4  

E25 = ez ^ es+f2 ^f5 

E34 = e3 ^ e 4 + f 3  A f4  

E35 = e 3 A es+f3 ^f5 

E~ = e~ ̂  es+f~^f~ 

H, = e, hA - e2 ̂ f2 

H4=e2Af2--e3Af3 

F24 = e2 ^ f 4 - f 2  A e 4 

F2~ = e2 ^f5  - f 2  ^ e~ 

F34 = e3 A f4- - f3  A e4 

F35 = e3 A f5 --f3 A e5 

F45 = e4 A f5 --f4 ^ e5 

H3 = e3 A f3 - e4 A f4 

/-/4 = e4 A f4 -- e5 A f5 

(3.7) 

such that they satisfy the Lie algebra for the 24 generators of the SU(5) 
group (it is a faithful representation). For example, 

[ E o, Elk] = 2Ejk 

[ E o, Ek~] = 0 

[ F o, F,k] = 2E~k 

[ ~:,  Fk~] = 0 

[E U, Fo] = -2/-/j 

[ H,, ~ ]  = [ H,, I-1,] = 0 

[Hi, Eij]= -2F, j  

[Hi, Ejk] =2Fjk with j =  i+1 

(3.8) 

These relations are in c~(0, 10), which then contains the SU(0, 5) group 
and the ~(0, 5) group. When the vectors used in ~(0, 5) and c~(0, 10) are 
normalized, the versors of these groups are isomorphic to the V(0, 5) and 
V(0, 10) groups (we should remind the reader that the versor groups are 
2 : 1 homomorphic to the orthogonal group). 

We have presented the multivector representation of SU(O, 5) in this 
form for physical reasons; first, because in this method the necessity to 
enlarge the basis space Sr to J0,1o appears in a natural way and second 
because the construction of q~(0, 10) leads to the O(0, 10) group and to the 
SO(O, 10) group directly. The SO(O, 10) group is very important in the 
vertical grand unified theories [these theories improve some SU(O, 5) predic- 
tions and avoid some problems]; moreover, this construction allows a logical 
coordination with the exceptional groups [predicting horizontal funda- 
mental interactions between families (Ross, 1985)]. Then, if we use one 
single mathematical language to both construct Lie groups useful in grand 
unified theories and to include the spontaneous symmetry breaking (SSB), 
within the Clifford language, we can get naturalness in the model besides 
avoiding some representation problems. 

Using the spin group definition, the spin(0, 10) group contains the 
multivectors in ~(0, 10) such that they are invariant if ei ~ -ej  and f ~ - f  
[the SU(O, 5) group is a subgroup of the spin(0, 10) group]; on the other 
hand, the elements of the spin(0, 5) group are invariants for the ei ~ -ei  
involutions in ~(0, 10) and they form another SU(O, 10) subgroup. It is 



Multiveetorial Representation of Lie Groups 191 

also possible to show the isomorphism between the spin(0, 5) group and 
~(0, 4) group. This is a feature of the representations by multivectors which 
appears in many cases for different (p, q) to a group with n '=  n - 1  = 
p+q-1. 

In the SU(O, 5) grand unified theory the symmetry is broken to the 
SU(3)c x SU(2)x  U(1)y model when the scale energy reaches the value 
predicted from the renormalization group equations; therefore it is useful 
to show a maximal subgroup SU(3)c x SU(2)x  U(1)y which is contained 
in SU(O, 5) under the following relations: 

EI2(SU(O, 

EI3(SU(O, 

E23(SU(O, 

FI~(SU(O, 

F,3(SU(O, 

F23(SU(O, 

H1(SU(O, 

He(SU(O, 

E45(SU(O, 

F45( S U ( O, 

H4(SU(O, 

H3(SU(O, 

5 ) ) o E , 2 ( s u ( o ,  3)) 

5))<-.-~ E13(SU(O , 3)) 

5)) ~ E23(SU(O , 3)) 

5)) ~ F,2(SU(O, 3)) 

5))~, F,3(SU(0, 3)) 

5)) ~ F~3(SU(O, 3)) 

5)),-, H,(SU(O, 3)) 

5))~H~(SU(O, 3)) 

5)) ~ E,2(SU(O, 2)) 

5)) ~ F12(SU(O , 2)) 

5)) ~ H,(SU(O, 2)) 

5))~-~ E,(SU(O, 1)) 

(3.9) 

which are eight SU(0, 3)c generators, three SU(0, 2) generators, and one 
for U(0, 1). Thus, the SU(O, 5) ~ SU(O, 3)c|  2 |  U(1)y chain is well 
defined in this multivectorial representation [the other SU(O, 5) generators 
transform under the two non-Abelian groups simultaneously and physically 
they allow quark-lepton interaction besides the electroweak and strong 
interactions]. 

As in this representation we include only Euclidean spaces, the rotor 
groups [Spin*(0, 10), Spin*(0, 5), and Spin*(0, 3)] are isomorphic to the 
corresponding spin groups [Spin(0, 10), Spin(0, 5), Spin(0, 3)]. 

3.2. suo ,  3) 

This is an interesting example because we can use the multivector 
algebra of the Minkowski space as the algebra for the generator space, and 
because there are models with grand unified groups larger than SU(O, 5) 
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which include it in the intermediate step for the spontaneous symmetry 
breaking (SSB). In this case we use ~r with the basis (eo, el, e2, e3; fo, 
f i ,  f2, f3) (according to the MIC hypothesis), such that 

e i . e j = f . ~ = g ~ = d i a g ( 1 , - 1 , - 1 , - 1 )  for i , j = 0 , 1 , 2 , 3  (3.10) 

From the basis bivectors for cr 6) we can construct the following 
nonsimple bivectors: 

E01 = eo ̂  el +fo Afl Fol = eo Aft --fo A el 

Eo2=eo^e2+foAf2 Fo2=eo^f2--foAe2 

E03 = eo ̂  e3+fo ^f3 F03 = eo^f3 - f o ^  e3 

E12 = el ^ e2+fl Aft Fl2 = el A f t - f 1  ^ e2 

El3 = el ^ e3q-fl ^f3 FI3 = el ^f3 --fl A e 3 

E23=e2^e3+f2^f3  F23=e2^ f3 - f2^e3  

Ho = eo ̂ f o -  el ^ f i  1-12 = e2 ̂ f2 - e3 ^f3 

H1 = el ^ f i - e 2 h A  

which satisfy the Lie algebra for the SU(1, 3) group. 

(3.11) 

It is obvious from the definition of Clifford algebras that the ~(2, 6) 
group contains the ~(1, 3) group and both are isomorphic to the correspond- 
ing versor groups (2:1 homomorphic  to their orthogonal groups), and that 
the Spin(l,  3) group is isomorphic to the ~(0, 3) group, while the Spin*(1, 3) 
group (the Lorentz proper group for the spin-1/2 multivector representation) 
is isomorphic to ~(0, 2). This chain makes ~(2, 6) especially important. 

3.3. su(o ,  3) 

In physics it is of  particular interest to analyze the SU(O, 3) group 
because it is the gauge group used in the quantum chromodynamics theory 
(QCD);  this Yang-Mills field theory is a dynamic principle which explains 
and predicts some experimental facts of the strong interactions. As a matter 
of fact, one of the first applications of SU(O, 3) was in the classification of 
the energy spectrum for hadrons; afterward it was recognized as being even 
more important in the theory of "color"  (Aitchison, 1984). 

In the discussion of the SU(O, 5) group above, the SU(O, 3) group was 
already constructed as a subgroup of SU(O, 5). Here we get a multivector 
representation for this group enlarging the basis space ~r to ~2p.2q, a 
construction which would force the introduction of isotopic spaces and the 
use of bivector algebras. This would be particularly important in the cases 
where it is physically necessary to use ~r and its Clifford group ~(1, 3). 
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For the SU(0, 3) group it will be shown that it is enough to use a 
multivector representation of cg(1, 3). This Clifford algebra has an irreduc- 
ible matrix representation over the complex field, 4 •  matrices with 16 
linearly independent elements; we can choose these 16 matrices as the four 
Dirac y ,  matrices and their products [for groups larger than SU(O, 3) it 
will be necessary to use another matrix set with more degrees of freedom 
than the Dirac set]. All multivectors M in cr 3) can be represented as a 
linear combination of the Dirac gamma matrices y ,  in the standard rep- 
resentation, for example. For this reason it is not only possible but also 
straightforward to find a faithful multivectorial representation for the 
SU(O, 3) group in cr 3) and its subgroups. In several cases when the Lie 
group has 16 generators or less it can have a rnultivectorial representation 
in ~(1, 3). 

In our present case, due to the fact that the SU(O, 3) group has only 
eight generators, it is possible to find several multivectorial representations 
in cr 3) for it. As a first example consider (here yr... = yiy~" �9 ") 

1 1 
A, = ~  (To, + iy23) A5 = ~  (iT3- Y123) 

1 i 
~2 ~- 2 ('~02-- iT13) A6 = ~  (T023 + T2) 

1 i 
A3 = ~ ('Y03 q'- i'Y12) A7 = ~ ('yl q- "YO13) 

1 
/~4 = :('YO q- iyo,2) Z 

(3.12) 

i 1 i ) 
As= v03-y  v,2 

where the Ai, i = 1 . . . . .  8, satisfy the Lie algebra for SU(3) and 

{Yu, %~, r/~,,p, 35,~0~ = Ys} c cg( 1, 3) 

The A~, A2, A3 (and As) generators constitute a subalgebra included in  
~2(1, 3) forming a cg(1, 3) multivectorial representation for the SU(2, 0)| 
U(1, 0) maximal subgroup [A~, A2, and A 3 are generators for the SU(2, O) 
group and As is the generator for the U(1, 0) group]. The other SU(0, 3) 
generators do not constitute a subalgebra [they are odd versors in C(1, 3)] 
and transform under SU(2, 0) and U(0, 1) simultaneously. 

The Yi ( i=  1, 2, 3) generators are invariant under a product with the 
i%s, while Aj (j  =4,  5) are invariant under a product with its2; also the Ak 
(k = 6, 7) are invariant under a product with Yo3 = -(iYs)(iyl2); these factors 
are U(1) generator elements. This observation coincides with concepts 
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presented by Keller (1982, 1984, 1985, 1986, 1991; see also Rodrfguez, 
1986), who discusses the idempotents which define the projectors needed 
to classify minimum ideals in cr 3) (spinors) and the matrix representa- 
tions associated with each case; it is convenient to write explicitly 

�89 i=  1,2,3, 

~(1 + iT12)hj = hi, j = 4, 5 

�89 7o3)hk = hk, k = 6 , 7  

hi E SU(2) 

for the (3.12) generators, where �89 + i75) is the chiral projector and �89 + i712) 
is the spin projector and the last one is the z-momentum projector. Finally, 
this multivector structure has a (nontrivial) matrix representation, where it 
is convenient to use the chiral form for the representation of the Dirac 
matrices and to choose the chiral and spin projectors to classify minimum 
ideals in the ~(1, 3) (spinors) and conversely this choice generates the chiral 
representation for the Dirac matrices. 

Another construction for SU(3) in ~(1, 3) would be given by 

i 

i 

i 
h;=~(~ ,2+~o,~)  

1 
,x~, = ~ (~,~ + i~o~) z 

1 
h ~ = ~(T3 - itl23) 

1 + 
h~ =~(r2 i70~) 

1 
h~ =~  ("/1- i'Yo2) 

1 
h~ = ~ - ~  (2~,o + i~,,~-i~o,2) 

using the same notation used for the generators (3.12). 
These are examples where a subalgebra of ~(1, 3) is not its bivector 

subalgebra. This is needed because the multivector representation for SU(2) 
has even and odd versors [the even part of ~(1, 3) is a subalgebra of it, 
but the contrary is not necessarily true]; the SU(2) generators are h~, h~, 
and h~, while the U(1) generator is h~; it is constructed using a lineal 
combination of multivectors which do not change the group generators [70 
for h'l, h~, and hl ;  i3q2 for hl  and h~; and finally i7o12=(yo)(iy12) for AS 
and AS]. In this construction 

/(1-4- ,)to)hi =/~i, i = 1, 2, 3, h, ~ SU(2) 

l ( l  + iT,2)Aj = Xj, j = 4 , 5  

l(1 + iT0~2)hk =hk, k = 6 , 7  

where �89 + 70) is a "mass" projector for the field. This structure has the 
nontrivial matrix representation induced when we use the mass projector 



Multivectorial Representation of Lie Groups 195 

[�89177 and spin [�89177 to classify minimum ideals of ~(1, 3) 
(spinors). Here the convenient choice is the standard representation for the 
Dirac matrices [and their products, see Rodrfguez, 1986]. 

Consequently, we have a general method (deduced from the illustrated 
with the two special cases presented here) to construct a multivectorial 
representation for Lie groups. First, we proposed the SU(3) or SU(2) 
generators using multivectors of  interest, either from physical or from 
mathematical reasons, useful to classify the c~(1,3) minimum ideals 
(spinors); then, a second set of projectors is chosen in cr 3) to construct 
explicitly the multivector set of a given symmetry (invariant under a set of 
group generators) and at the end we define the U(1) generator, up to a 
normalization, as a lineal combination of the three multivectors which leave 
the group generators invariant (in our case each one of them is the product 
of  the other two). The remaining generators are found as the corresponding 
product of other previously found generators. Finally, it is important to 
keep in mind that there is a nontrivial matrix representation for the spinor- 
multivector system. 

3.4. SU(2) 

Nowadays the most successful gauge model is the SU(2)• U(1) 
electroweak interaction model. In it the SU(2) group is locally isomorphic 
to SO(3) and its square is locally isomorphic to the proper Lorentz group. 
When we studied the SU(5) group above we got a multivectorial representa- 
tion to the SU(3) group according to the MIC hypothesis; subsequently, 
we obtained two multivectorial representations [within cr 3)] using non- 
simple multivectors which were not necessarily homogeneous~ Due to the 
fact that SU(2) has only three generators, it has several multivector rep- 
resentations in c~(1, 3) [for example, {Yoi} with i= 1, 2, 3 or {iyo, iyoys, 
Ys}, which also satisfy the SU(2) Lie algebra]. 

We will illustrate elsewhere (Keller and Rodrfguez-Romo, 1990) the 
use of this multivector representation for common Lie groups in a spinor- 
multivector map which will be used to make a multivector analysis of the 
Dirac equation. Some applications are already included in our previous 
papers. 

In conclusion, it is possible and direct to find multivector representa- 
tions of Lie groups which are relevant to direct use in the construction of 
field theories. 
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